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Methods for combining information from a single isomorphous replacement with phase determining 
relations for noncentrosymmetric crystals are discussed. The methods mainly concern those circum- 
stances when the related probabilities are large enough to permit the application of phase determining 
relations in a step-by-step fashion as in the symbolic addition procedure, obtaining new phases, at the 
start, from relatively few known phases. The case when the isomorphous replacement makes a real 
contribution to all the structure factors is discussed and appropriate phase determining formulas with 
their associated probabilities are derived. 

For the case when the isomorphous replacement involves a noncentrosymmetric substituent, Coul- 
ter has previously suggested a procedure for combining information from the replacement and phase 
determining formulas for large molecules such as proteins. A procedure is presented here for smaller 
molecules involving a noncentrosymmetric substituent which is an alternative to that of Coulter. It is 
discussed in terms of a phase determining procedure which has already been applied to the structure 
determination of noncentrosymmetric crystals without the aid of an isomorphous replacement. 

1. Introduction 

The phases of the structure factors can be immediately 
obtained for centrosymmetric crystals, as is well known, 
from a single isomorphous substitution. For noncen- 
trosymmetric crystals, at least two different isomor- 
phous substitutions are required for a direct generaliza- 
tion of the method to the evaluation of the phases of 
the complex structure factors. This is known as the 
method of multiple isomorphous replacement (Bok- 
hoven, Schoone & Bijvoet, 1951). Coulter (1965) has 
suggested a procedure for phase determination for non- 
centrosymmetric crystals which combines the use of 
a single isomorphous replacement possessing generally 
placed substitutions with a phase determining formula, 
the tangent formula (Karle & Hauptman, 1956; Karle, 
1964). It is the purpose of this paper to discuss further 
the combination of a single isomorphous substitution 
with phase determining formulas, and to describe a 
procedure for phase determination for noncentrosym- 
metric crystals which is applicable when the isomor- 
phous substitution has the special property of making 
only a real contribution to all the structure factors. 

2. Analysis 

Phase determining relations 

We define the quasi-normalized structure factor 
(Karle & Hauptman, 1959), 

N 

gk=a~ -~ 2: Zj exp (2zcik. rj) ,  (2.1) 
j = l  

and the quasi-normalized structure factor for the 
squared structure 

N 

gk=Cr~ -~ S Z~ exp (2z~ik. rj),  (2.2) 
j = l  

where Zj is the atomic number of the j th  atom having 
coordinates represented by the vector rj in a unit cell 
containing N atoms, and 

N 

an=  Z Z~'. (2.3) 
j = l  

Then, 
N 

gkgh_k = a~ -1 Z" Z~ exp (21rih. rj) (2.4) 
j = l  

N 
+a~  1 S ~ ZjZj ,  exp [2zri{k. r j + ( h - k ) ,  rj,}] 

j4=j" 
! 

and if we average over all values of k, the double 
sum term becomes zero and we obtain, 

N 

(~k~h_k)k=a~-I X Z~ exp (2rcih. rj) 
j= l  

- - a ~ G ~ .  (2.5) 
By means of the joint probability distribution, a 

formula similar to (2.5) has been found in terms of 
normalized* structure factors (Karle & Hauptman, 

1956), E h ~ a~/2a; ~ ( EkEh_k)k . (2.6) 

An advantage of working with (2.6) rather than (2.5) 
is that probability formulas, expressing the probability 

* For the case that none of the indices is zero, the quasi- 
normalized structure factors, ~, are the same as the normalized 
structure factors, E. When there are systematic absences due 
to space group extinctions among reflections for which at least 
one of the indices is zero, the quasi-normalized structure 
factors have to be rescaled to equal the normalized structure 
factors. If, for example, half of the reflections are extinctions 
within a particular set, such as the hOl reflections in space 
group P21/c, then the appropriate quasi-normalized structure 
factors must be divided by 2 ~, i.e. ~n0~/2 ~ =En0z. The rule is 
IdOlZ(1-q)= IEI z, where q is the fraction of reflections in the 
set which are space group extinctions. We are considering 
here only primitive unit cells. 
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of the correctness of the phase indication of one or 
more of the contributors to the average, are readily 
defined in terms of the normalized structure factors. 
It is also seen that all the quantities in (2.6) are asso- 
ciated with the original structure. Actually, the nor- 
malized structure factors for the original and squared 
structures are equal when all the atoms are the same, 
and the larger ones do not differ significantly even 
when the atoms present are of quite unequal atomic 
number. 

Equation (2.6) can be rewritten 

Eh = oq, + iflh'~ C73212¢Tg1(O~kO~h_k-- flkflh_k + i ( f l k ~ h _  k 

+ C¢kflh_~))k, (2.7) 

where the ~'s and fl's are evidently the real and imagin- 
ary parts, respectively, of the normalized structure 
factors. Noting that an analysis similar to (2.1)-(2.5) 
for the real parts of the structure factors is equivalent, 
except for a factor of 2, to the derivation of (2.5) for 
centrosymmetric crystals, we may conclude from (2.7) 
that 

~h ~ 2a~/2a3 - l (oCk~h--k)k = - -  2~7312~;l(flkflh--k)k" 

Also, since 
(~kO(h--k)k = (O~kflh--k)k , 

we have for the imaginary part, 

(2.8) 

(2.9) 

flh,,~ 20"23/20"~- l ( f l k ~ h _ k > k  "-  20"23/20"~- 1 ( ~ k f l h _ k >  k . ( 2 . 1 0 )  

It is of interest to examine equations (2.8) and (2.10). 
Equation (2.8) indicates that the sign of the real part, 
~h, can not only be obtained from an average over the 
product of real parts, C~k~h_k, as expected, but also 
from an average over the product of imaginary parts 
flkflh--k" It is also seen from (2.10) that the imaginary 
part, fib, is obtained by taking averages over products 
of real and imaginary parts. A formula similar to 
equations (2.8) and (2.10) has been used quite generally 
and with success for sign determination for centro- 
symmetric crystals. A general discussion of the pro- 
cedure to follow has been given by Karle & Karle 
(1966). Therefore, if the magnitudes of the real and 
imaginary parts of the structure factors were available, 
the phase problem for noncentrosymmetric crystals 
would be essentially as simple as that for centrosym- 
metric ones. 

Probabi l i t ies  

At the beginning of a procedure for phase determina- 
tion for structures of not too great complexity, single 
terms are used in (2.8) and (2.10), rather than averages 
over many contributors. The initial steps would in- 
volve the use of the real and imaginary parts of largest 
magnitude. In order to judge the reliability of each 
step in the procedure, it is important to have pro- 
bability formulas expressing the probability that the 
sign of a real or imaginary part is positive in terms of 
the contributors to (2.8) and (2.10). 

The appropriate probability formulas can be ob- 
tained in a fashion similar to that used to derive equa- 

tion (3.36) in Monograph 3 (Hauptman & Karle, 
1953). These formulas are then put into the convenient 
hyperbolic tangent form of Woolfson (1954). The fol- 
lowing definitions of the complex structure factor, Fh, 
and the real and imaginary parts of the normalized 
structure factor, Eh, are employed: 

NIn 
F h = X h + i Y h  = S f ih[~(x~,y~,z: ,h) 

j = l  
+ iq(x~,y: , z~ ,h)] ,  

so that 

and 

(2.11) 

Fh n~ 
Eh-- (m 2o +mo )2~a2 --C~h + iflh , (2.12) 

); 'hn ~ 
~h = (m o +mo)2 ,a~,, (2.13) 

Yhn ~r 
fib= (m ° +m0)2 ~a2 ( '  (2.14) 

where fi'h is the scattering factor of the j t h  atom whose 
coordinates are x~, y~, zj, n is the symmetry number of 
the space group and the m are moments defined in 
terms of the real and imaginary parts of Fh, ~ and r/ 
resp., which can be found in In terna t iona l  Tables  f o r  
X - r a y  Crys ta l lography  (1952). A general mixed moment 
is defined by 

~6,...6 r _  0 "% .... ~ " -  o o ~ ' l ( x ' y ' z ' h l ) ' ' ' ~ ' r ( x ' y ' z ' h r )  

× ~7al(x,y,z, hl) . . . q a r ( x , y , z , h r ) d x d y d z  . (2.15) 

The probability formulas, obtained in accordance 
with the definitions (2.11) to (2.15) with the use of 
Monograph 3, are then put into the hyperbolic tangent 
form by means of a procedure indicated in a previous 
review article (Karle, 1964, p.73). We thus obtain for 
the probability, P+(~b), that the sign of ~h is positive, 

P+(eh) ~ ½+½ tanh -too ~- ( m ~  + rn~)  ~ 
200 

..,0o0 ± , ~ 0 2 0 ~ . . . , ~  + m ~ ) *  a3a~- 3nl~hl )< \1 , , 020~  I1~000] k1~002 

, ,•000 ,,oll k ) ]  
I H ' l l l  __ X~k~h__ k ..1_ ""100 X~k]~h (2.16) X / ~aaO00~000 ~ 0 2 0 ~ 0 0 2  --k , 
\ "r'020'"'002 k "000 '1 '000 

and for the probability, P+(flb), that the sign of flh is 
positive, 

~,~rmlO1 
P+(&) ~ ½ - ½  tanh . . . . .  olo ~,,200w,000~,,002 (m2~o "k-~200~'~,,,000/ 

"*000"~020'"000 
000 _I- yw020~ ~(~,~000 2_ ,,~002'~-~ 

X ( too20 ~ - "000)  v~,o02 ~ .'-,OOOl 

0"30"23/2[flh[ Z ~k]~h__k/. (2.17) 
k .! 

In general (2.16) and (2.17) reduce to 

P+(~h) Z ½ +-~- tanh 2cr3a~-3/2]~h] 

(z ~k~.-~-- Z &Z~_~), (2.18) 
k k 

and 

P+(flh) Z½+½ tanh 2o'3o'23/21flh1 Z" ~k~h--k " (2.19) 
k 



It is apparent that knowledge of the real replacement 
F r - x  gives both the magnitudes and signs of the real 
parts of FR+x and FR+Y, and the magnitudes of the 
imaginary parts. With the assignment of the sign of a 
particular imaginary part to specify the enantiomorph, 
it should be readily possible to employ the informa- 
tion available from the isomorphous replacement with 
the phase determining formulas (2.8) and (2.10) to 
obtain the signs for the remaining imaginary parts. In 
this way it is possible to perform a complete phase 
determination, even when the isomorphous replace- 
ment is real, given sufficient experimental data. Suf- 
ficiency is determined by the possibility of obtaining 
adequately high probabilities, as measured by (2.18) 
and (2.19), to proceed with the determination. The 
situation here can be expected to be more favorable 
than in the ordinary application of the symbolic addi- 
tion procedure for centrosymmetric crystals, since in 
applying (2.10) the sign of one of the factors in the 
product, that of e, is initially known. The detailed 
theoretical and practical aspects of the application of 
the symbolic addition procedure have recently been 
described (Karle & Karle, 1966). 

In special cases, calculation of the moments shows 
that the 2 in the argument of tanh must be replaced. 
For example, when eh, ek and 0Ch_ k all correspond to 
centrosymmetric reflections of the same type, e.g. the 
hOl reflections in P2 or in P222, the 2 in the argument 
of tanh is replaced by 1. However if the ~h, C~k, C%--k 
correspond to centrosymmetric reflections of the type 
hOl, Okl, hkO, respectively, in space group P222, then 
the numerical coefficient is again 2. Additional varia- 
tions in the coefficient occur when the reflections con- 
cerned come from subsets which include absences aris- 
ing from the space group symmetry. In any given case 
the moments required for (2.16) and (2.17) can be 
readily computed from (2.15). 

3. Real isomorphous replacement 

The description of an isomorphous pair in terms of 
structure factors can be made as follows: 

FR+x + F y - x =  FR+ y , (3.1) 

where FR+x is the structure factor for the structure 
consisting of invariant atoms R and replaceable atoms 
X, FR+z concerns the invariant atoms R and replace- 
able atoms Y and F y - x  is the structure factor for the 
configuration of the difference between atoms Y and 
atoms X. The relationship of isomorphous replace- 
ment to phase determination in noncentrosymmetric 
crystals was clarified by Bijvoet (1952). We shall con- 
sider now the case when Y - X  refers to a centrosym- 
metric configuration, whereas R +  X and R +  Y are 
noncentrosymmetric. An appropriate diagram is given 
in Fig. 1 in which two circles of radius IFR+xl and 
IFR+YI are drawn. The vector F y - x  is assumed to 
point in the positive real direction, giving the two am- 
biguous closed vector polygons. Information concern- 
ing FY-x  is generally obtained from a calculation of 
the Patterson function, or a modification thereof. 

4. Complex isomorphous replacement 

In the case of a complex isomorphous replacement, 
equation (3. l)is still appropriate. However, here Y - X ,  
as well as R + X and R + I7, refers to a noncentrosym- 
metric configuration. An appropriate diagram is given 
in Fig.2 in which two circles of radius IFR+xl and 
IFR+YI are drawn. Two ambiguous closed vector poly- 
gons are obtained symmetric about the direction of 
Fg-x,  Clearly the problem of determining the phase 
of FR+x or FR+Y is reduced by the single isomorphous 
substitution from the consideration of all values be- 
tween - n  and + n to the choice of either of two fixed 
alternatives. The choice of one of the two alternatives 

I MAG I N ARY I MAGI N ARY 

Fy- 

REAL REAL 
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Fig. 1. Construction for isomorphous replacement showing the 
relationship among the vectors FR+x, Fn+Y and Fr-x where 
the latter is real. 

Fig. 2. Construction for isomorphous replacement showing the 
relationship among the vectors Fn+x, FR+y and FY-x where 
the latter is complex. 
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for an appropriate structure factor can determine, 
through phase determining formulas, the choice of the 
proper alternative for the remaining structure factors 
of interest. 

When the probabilities or variances do not permit 
the application of phase determining relations in a 
step-by-step fashion by giving definitive choices be- 
tween the alternative values for the phases, it is pos- 
sible to proceed according to the suggestion of Coulter 
(1965). In his procedure a large amount of preliminary 
phase information can be assembled, since the phases 
of pure real and pure imaginary structure factors are 
determined by a single isomorphous substitution, and 
in many instances the ambiguous alternatives for the 
complex structure factors are not widely separated, 
thus permitting the averages of their alternative phase 
values, given by the phase of the substitution, to be 
used as a starting point. This preliminary phase in- 
formation can then be refined and extended by use of 
formula (4.2) below. 

When the probability measures are high enough, the 
phase determination can proceed in a step-by-step 
fashion by employing appropriate phase determining 
formulas for the noncentrosymmetric space groups. An 
advantage in proceeding in this way is that it would 
be initially possible to evaluate the phases associated 
with the largest E-magnitudes, even though the am- 
biguous values for the associated phases were widely 
separated. The phase determining formulas are 

and 

~h ~ (~k -t- qTh--k)kr , (4.1) 

S[EkEh_kl sin (0k+ ~0h--k) 
k (4.2) 

tan ~0h~ SlfkEh_k I COS (~k-~-(Ph_k) ' 
k 

where the E k represent normalized structure factors 
whose phases are ~0 k and the symbol kr implies that 

the average extends only over those vectors, k, associ- 
ated with large ]Ek[ values. The application of these 
formulas in connection with the symbolic addition 
procedure has been discussed elsewhere (Karle & 
Karle, 1964, 1966). It is suggested that the symbolic 
addition procedure be followed in direct combination 
with the information from the isomorphous substitu- 
tion. Clearly the addition of this latter information 
reduces the problem from determining the value of a 
phase from the continuous range of - n  to + n to that 
of choosing between only two possible values permitted 
by the interpretation of the substitution. Measures o! 
the variance (Karle & Karle, 1966, equation (3.33) and 
Fig.2) may be employed in order to evaluate the re- 
liability of the contributors in (4.1). In this way a set 
of phases may be generated in a stepwise fashion. 
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Some Growth Features on (111) Faces of Natural Diamonds 
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Some particular features on the (111) faces of a diamond are reported. They are vicinal faces built up 
by extremely thin growth layers. A growth mechanism is suggested. 

Introduction 

The crystal studied was picked from among some 
hundreds of natural diamonds from South Africa. It 

* Present address: Istituto di Mineralogia, Universitb. di 
Genova, Via Leon Battista Alberti 4, Genova, Italy. 

is a tabular twinned octahedron modified to a rounded 
hexaoctahedron on the sides, and the crystal is so flat- 
tened that only two octahedral faces, viz. (111) and 
(111), appear as well as curved (hkl) type faces. 

A small portion of the crystal had been chipped off 
(Fig. 1). This diamond weighs 0-58 carat, is transparent 
and as far as can be seen under the microscope has no 


